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A First-Order Phase Transition between 
Crystal Phases in the Shift Model 
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We describe rigorously a many-body model of interacting classical particles 
exhibiting the following behavior at zero temperature: as the pressure varies 
through a critical value, the system goes through a first-order phase transition 
between different crystal phases. Moreover, at the critical pressure the system is 
demonstrably a mixture of the two phases. 

KEY WORDS: Phase transition; crystal; ground state. 

1. I N T R O D U C T I O N  

It remains at heart obscure why all forms of matter  tend to be crystalline 
rather than amorphous at low temperature. After all, a crystalline configu- 
ration is rarely if ever observed (l) for small  clusters of molecules (less than 
100, say); it must be a question of extending patterns to large clusters that 
forces the crystalline symmetry. This is one of the major unsolved problems 
of condensed matter  physics. (2) 

Most of the effort on this problem (see Ref. 3 and references therein) 
has centered on the molecular-bonded solids, using classical mechanics and 
Lennard-Jones- type  forces. Since even the various close-packed crystals 
yield extremely close molar energies, it has been necessary to concentrate 
on models in one and two dimensions; since Mermin's  theorem (4) indicates 
a lack of long range order for temperature T > 0 in these dimensions, one 
is lead to investigate the case T - -  0. 

Below we describe rigorously a many-body model of interacting classi- 
cal particles exhibiting the following behavior at low (zero) temperature: as 
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the pressure varies through a critical value, the system goes through a 
first-order phase transition between different crystal phases. Moreover, at 
the critical pressure the system is demonstrably a mixture of the two phases. 
(For a general reference see Ref. 2.) 

Our model (which we call the shift model) is one dimensional with 
interaction potential: 

I +  oo, 0 < r  < 0.96 

t- 100r + 97.8, 0.96 < r < 0.98 
�9 (r) = l - r + 0.78, 0.98 < r < 2 

/1 .16 -3 .54 ,  2-<< r < 3  
|0.1r - 0.36, 3 < r < 3.6 
[0, 3.6 < r 

Note that the range of �9 is less than 4(0.96) so each particle interacts with 
at most three particles on each side of it on the line. (The graph of �9 is 
continuous for r > 0.96, and composed of line segments.) 

Throughout this paper we assume a fixed number N > 11 of particles 
in the system. The total (potential) energy E r ( x )  of a configuration (i.e., set 
of particle positions) x = { x ~ , x  2 . . . . .  xN) ,  Xk+ ~ > Xk, depends only on the 
"spacing sequence" ( x  2 - x 1, x 3 - x 2 . . . . .  XN -- X~,V-1) and can be decom- 
posed: 

N - 4  
E r ( x )  = (1/4) ~ Ej(x) + C ( x )  

j = l  

where 

g(x) = [ + % + ,  - +)  

3C ff~(Xj+ 2 -- Xj+I)  q" (I)(xj+ 3 -- Xj+2) "1- (I)(xj+ 4 -- Xj+3) ] 

+ (4/3)[+(xj+ 2 - xj)  + +(xj+ 3 - x j+ , )  + +(xj+,  - xj+2) ] 

"1" 2[(1)(Xj+ 3 -- Xj) n t- (1)(Xj+ 4 -- Xj+I) ] 

and C ( x )  (due to undercounting the nine interactions involving the three 
particles at each end) is bounded as N--+ oo. (When considering one Ej we 
also denote (xj, xj+l,Xj+2,xj+3,xj+4) by x.) Note that C ( x )  ~- 0 if periodic 
boundary conditions are used. 

We are concerned with low-temperature behavior. The statistical en- 
semble (the "pressure ensemble ''<2)) corresponding to fixed pressure p and 
inverse temperature fl has density e x p ( -  f l i E r ( x ) +  pVr]) ,  where V r is 
the (variable) volume: V r > x N - x I. Therefore at zero temperature the 
ensemble (i.e., probability measure) is concentrated on those configurations 
x which minimize E r ( x ) + p V  r, where now V r =  V r ( x ) = x  N - x  1. Our 
main task is thus to minimize E r ( x )  (with variable volume constraint). It is 
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noteworthy that we can accurately approximate such a minimizing configu- 
ration by instead minimizing each Ej(x) and noting that the N-particle 
configurations which do this can be chosen to be "compatible" in the sense 
that they minimize Ej(x) for a l l j  simultaneously. We minimize each Ej(x) 
with x subject to the variable constraint of given volume Vj(x) --= xj+ 4 - xj .  

2. E S T I M A T E S  

First we note from simple considerations that to minimize Ey(x)+  
p V j ( x ) ,  p >1 0 fixed, we need only consider x such that 3.84 < Vy(x) < 4. It 
is convenient to reparametrize volume by w = 4 - Vj., 0 < w < 0.16. Define 

E(w)  = min[Ej (x)  [ x j+ 4 - xj  = 4 - w]  

F ( p )  =min[J~(w)  + p ( 4 -  w)10 < w < 0.16] 

and let Eeq(W ) be the value of Ej(x) when the x k are equally spaced, 
Xk+ 1 -- X k = 1 -- W / 4 .  In computing E ( w )  we will consider separately the 
intervals 0 < w < 0.08 and 0.08 < w < 0.16, and we begin with the former. 

It is easy to check that for 0 < w < 0.08, Eeq(W ) = E e q ( 0  ) - 0.48W. To 
compute E(w) we consider a configuration of five equally spaced particles 
with xj+ 4 - x j  = 4 - w and compute the change in energy under arbitrary 
displacement of xj+ 1 , xj+ 2, xj+ 3. Let E,,,b,c denote the value of Ej(x) when 
xj+ I (resp. xj+ 2, xj+3) is increased by the amount a (resp. c , b )  from its 
equal-spacing position; a , b , c  are possibly negative. It is easy to see from 
force considerations that in any minimum configuration (0 < w < 0.08) no 
two particles are closer than 0.98 and also that Icl < w / 2 .  There are three 
basic cases to consider: a t> b/> 0, b/> a/> 0 and a ~> 0/> b. (The case 
a < 0 < b  cannot  lead to a minimum unless a = b = 0 . )  Assuming 
a/> b t> 0 one can show that the following inequalities are sharp: For  
0 < w < 0.22/85,  Ea,b,c >1 E ( 1 ) ( w )  ='-- Eeq(W) + 1.06(w - 0.04) + 1.7w/3 
(with equality when w = 0 only if a -- b = 0.02, c = 0), and for 0.22/85 < w 
< 0.08, Ea,b, ~ >1 E ( : ) ( w )  =- E~q(W) + 2.96(w/2 - 0.04)/3 (with equality 
when w = 0.08 only if a = b = c = 0). 

Assuming b >~ a/> 0, one can show that the following inequalities are 
sharp: For  0 < w < 0.02, E,,,b,c >1 E(3)(w) ----- Eeq(W ) + 1.06(2w - 0.04) 
(with equality when w = 0 only if a = b --- 0.02, c = 0), and for 0.02 < w 
< 0.08, Ea,b, ~ >1 E~q(W) (with equality when w = 0.08 only if a = b = c = 0). 

Finally, assuming a/> 0 ~> b one can show that the following inequal- 
ity is sharp: Ea.b, ~ >1 E(2)(w) (with equality when w = 0.08 only if a = b = c 
= 0.) Note that E(3)(w) > E ( O ( w )  for 0 < w < 0.08, E(2)(w) > E ( l ) ( w )  
for 0 < w < 0.22/85 and E(2)(w) < E(1)(w) for 0.22/85 < w < 0.08. Thus 

= E (I) on [0,0.22/85] and E = E (2) on [0.22/85,0.08]. 
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Next we compute E(w) for 0.08 < w ~< 0.16. It is easy to check that 
Eeq(W ) = Eeq(3.92 ) + 98 .52(w-  0.08). Using the obvious constraint 0.96 
< xk+ ~ - x k < 0.98 we find the sharp inequalities: For 0.08 ~< w < 0.12, 
Ea,b, c >/ E (4) (W) ~ Eeq(W ) - 1.48(w - 0.08)/3 (with equality when w = 0.08 
only if a = b = c = 0 )  and for 0 . 1 2 <  w < 0 . 1 6 ,  Ea,b, c >1 E(5)(w)=-- 
Eeq(W ) - 1.48(0.16 Z w)/3 (with equality when w = 0.16 only if a = b = 
c = 0.) Therefore E = E (4) on [0.08,0.12] and /~  = E (5) on [0.12,0.16]. 

Now consider F(p), using the facts 

d 
dw E(1)(w) = 4.34/3 

d E(=)(w~ = 0.04/3 
dw ~ i 

d E(4)tw~ = 294.08/3 
dw ~ " 

d E(S)(w) = 297.04/3 
dw 

F o r p  = 0 it is clear that F(0) =/~(0), and Ej(x) = F(0) only for the spacing 
sequences 

(0.98, 1.02, 0.98, 1.02} or (1.02, 0.98, 1.02, 0.98} (1) 

To determine F(p) for p > 0 we first use the fact that as a function of w,/~ 
is concave downward on [0, 0.08]. This is the feature of our model 
producing the discontinuous decrease of volume with increasing pressure 
since it follows that there is a critical value Pc of p (easily seen to be 
Pc = 0.05) such that for 0 < p < Pc, F(p) =/~(0)  + 4p with F(p) = Ej(x) + 
pVj(x) only for Vj(x) = 4 and either of the "shifted" spacing sequences in 
(1), while for Pc < P < 297.04/3, F(p) = Ej(x) + pVj(x) only for Vj(x) = 
3.92 and equal spacing, of size 0.98. 

For each p, 0 < p < 297.04/3, p v a Pc, define 

V(p) = { 4, 0<p<pc  
3.92, Pc < P < 297.04/3 

Next note that crude estimates show that if Vj(x) = 4 + w, 0 < w < 1, then 
Ej(x) >1 E,q(W) - 0.0424 + 1.64w/3. Combining this with our results on 

E(w), we see that for small w of either sign: if Vj3x ) = 4 + w, Ej(x) - / ~ ( 0 )  

/> 1.641wl/3, and if Vj(x) = 3.92 + w, Ej(x) - E(0.08) > 0.041w1/3. 

3. C O N C L U S I O N  

Thus from the calculations above we immediately conclude that there 
exist finite constants C k independent of N such that if for a system of N 
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particles x = x(N) minimizes ET(x) + pVT(x): (a) IET(x(N)) - (N/4)  
/ ~ ( 4 -  V(p))[ < C,; (b) [VT(x(N))- UV(p)/4 i < C2; (c) for large N, 
x(N) "looks like" the appropriate crystal for that pressure, i.e., given ~ > 0, 
at most C3/eN blocks of five consecutive particles can differ from the 
appropriate perfect crystal block by more than e (measured with the 
Euclidean norm in ~5.) 

We thus have the existence and value of the asymptotic energy per 
particle and volume per particle: 

e(p) = lira E r ( x ( N ) ) / N  = ( 1 / 4 ) / ~ ( 4 -  V(p)) 
N - ~  oo 

= [ Eeq(0)/4 - 0.0106, 0 < p < Pc 

Eeq(0)/4 0.0096, Pc < P < 297.04/3 

v(p) = lim VT(x (N) ) /N= V(p)/4 
N ~ o ~  

= { 1 ,  0 < p < p c  

0.98, Pc < P < 297.04/3 

At p =Pc the volume is no longer constrained. It follows immediately 
from our calculations of E that there exists a finite constant C4 independent 
of N such that if x(N) is a configuration minimizing Er(x) + Pc VV(x), and 
v = Vr(x(N)) /N = aV(pc - 0) + (1 - a)V(p c + 0) for some a in [0, 1], 
then: (d) For large N, x(N) "looks like" a mixture of the two crystal 
phases, i.e., given e > 0 at most C4/eN blocks of five consecutive particles 
differ from one or the other perfect crystal block by at most e, This implies 
that x(N) consists of a small number of long chains of essentially perfect 
crystals of the two types, and, to obtain the proper volume, the number of 
blocks B c of the low-pressure phase and B H of the high-pressure phase 
must be in the proportion: BL/B . = a/(1 - a). 

Finally we note that simple force estimates show that sufficiently small 
changes in the interaction potential, including smoothing its corners, would 
preserve the first-order transition while making the volume a strictly de- 
creasing function of p 4: Pc; we expect they would also preserve the crystal 
phase structure, though this seems harder to prove. 
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